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Executive Summary

This grant had the objective of explaining the unusual properties of
polymer-derived-ceramics (PDCs), so called because they are made directly from cross-linked
polymers by controlled pyrolysis. The PDCs have very unusual properties: (i) Although the
pyrolysis is completed below 10000C their nanostructure remains stable up to 15000C, (ii) They
remain amorphous in Bragg diffraction although small-angle-xray-scattering shows the presence
of nanodomains, (iii) PDCs do NOT show steady state creep at temperature up to 1500°C despite
their amorphous structure, and (iv) PDCs exhibit viscoelasticity at high temperatures. The critical
advance made in this grant is the development of a nanodomain model for the PDCs, which is
validated by the experimental findings. The model, shown just below in Fig. 1, consists of a
graphene network interconnected in the form of nanodomains, about 1-5 nm in size. The
graphene network stabilizes the amorphous structure of the ceramic. The unusual properties of
PDCs are successfully explained by the nanodomain model. The PDCs are a new class of
metastable ceramics that are likely to lead to revolutionary new technologies for high
temperatures. They bear similarity to polymers on the one hand and metallic glasses on the other
hand. Like polymers and metallic glasses they spell the dawning of a new era of functional
properties that can be functionally tailored; however, the PDCs have the additional advantage of
remaining structurally and chemically stable at ultrahigh temperatures. The current PDC systems
that have been studied are comprised of silicon, carbon, nitrogen and oxygen.
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nanodomains. The silica molecules sequestered w~thin the domains are unable to crystallize, or
to creep because long range diffusion is suppressed. Note the contrast with nanocrystalline
materials: the grain boundaries in polycrystals degrade resistance to creep since they serve as
paths for fast diffusion. In the PDCs the refractory nature of the graphene "interfaces" suppresses
diffusion leading to unusual high temperature properies. There is increasing evidence that the
graphene can be functionalized, in the same way as carbon chains are functionalized in organic
polymer, to inculcate a wide array of multifunctional properties. Thus the PDCs will have a unique
place in the materials world, as the only known "amorphous" materials with remarkable resistance
to creep and with tailorable functional properties for high temperature applicaitons.
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Summary of Results and the Future

OVERVIEW

This report is in two sections. The first section provides the scientific
underpinning for the nanodomain model shown schematically in the Executive
Summary. Here the experiments and spectroscopic observations that led to this model
are described. Next, the model is developed quantitatively to predict the thickness of the
domain wall (in pm) and size of the nanodomains in nm. It is shown how the mere
composition of the amorphous ceramic can be used to calculate these two parameters
for the nanodomain structure. The results of this analysis have been displayed in "maps"
which can be read quickly to estimate the thickness of the domain wall and the domain
size.

The second section of this summary outlines my thoughts about the possible
applications of the PDCs in the field of ultrahigh temperature structural ceramics. A
paper, just published in the J. Amer. Ceram. Soc.[13] shows how the PDCs can create a
refractory phase in high temperature oxides such as hafnia, imparting to them properties
that cannot be achieved by the conventional sintering processes. Other work carried out
separately under a contract (from ARO led by Honeywell) on environmental barrier
coatings shows the great promise of PDCs as a bond coat, and as an additive to the top
coat in a multilayer design[1 0-12].

It is my hope that after a hiatus, support for work on PDC inspired ultrahigh
temperature materials for structural and sensor applications can resume at the
University of Colorado, under AFOSR's sponsorship.

THE HISTORY AND THE DESCRIPTION OF THE NANODOMAIN MODEL FOR THE PDCs

Two high temperature properties of PDCs, discovered in the 1990s, could not be
explained by conventional wisdom. The first was that silicon carbonitrides made from the
pyrolysis of heavily crosslinked polysilazanes resisted crystallization up to temperatures
as high as 1600'C[1]. The second observation, from the Pi's laboratory, was that despite
their amorphous structure the PDC exhibited non-detectable steady state creep[2,3].
Normal glasses like silica either crystallize or flow viscously when raised to high
temperatures. The absence of crystallization and creep suggested that the molecular
structure of PDCs is different than that of inorganic glasses.

Since PDCs are pseudo-amorphous materials their nanostructure is studied by
spectroscopic techniques such as IR (infrared absorption), Raman, NMR (nuclear
magnetic resonance) and SAXS (small angle x-ray scattering). These studies carried out
principally at the Max Planck Institute for Metallforschung in the late nineties until about
2005, gave the following information: (i) Raman suggested the presence of long range
graphene structures, (ii) NMR studies showed the presence of sp2 carbon-carbon
structures, consistent with Raman, but also the presence of mixed tetrahedral bonds
between Si, carbon and nitrogen, and (iii) SAXS gave strong signals for nandomains in
the 1-5nm size range; these signals suggest the presence of density fluctuation but



cannot provide information regarding the chemistry of these molecular clusters. On the
other hand NMR gives chemical information about the nearest neighbor bonds but
cannot provide details of chemical bonding on the length scale of several bond lengths.

Thus the spectroscopic information is fragmented and cannot by itself elucidate
the molecular structure of the PDCs. The approach adopted by the Colorado group was
to propose models for the nanostructure that are consistent not only with the
spectroscopic information but also with the phenomenological observations of the high
temperature properties of the PDCs are described above.

At first two possible nanodomain models, both of which were consistent with the
spectroscopic data were proposed:

I-2nm

2

Sio?
(A) (B)

Figure 2: Two possible models for the nanodomain structure of the
PDCs. Both models are consistent with the spectroscopic
information obtained from Raman, NMR and SAXS (using silicon
oxycarbide as an example).

Both models contain nanodomains, sp2 carbon, and mixed bonds at the interfaces of
graphene and silica. The principal difference between them is that in (A) the domains are
formed by carbon, while in case (B) the domains consist of silica tetrahedra. We try to
choose between these two models by considering their consistency with the creep
experiments. Here we expect to see a difference. In (A) the creep may be somewhat
retarded because viscous silica is filled with small particles, but cannot be suppressed.
However, in case (B) steady state creep would be suppressed since the applied stress
will become supported by the graphene network, which cannot deform by creep.

Thus the model in (B) is consistent with both the creep experiments and the
spectroscopic data for the PDCs. However, this model makes a prediction: the material
must be viscoelastic since the silica domains can relax by creep, gradually unloading the
stress on them on to the graphene structure. When the applied stress is removed the
graphene structure will spring back as the silica domains regain their original shape.
Experiments were carried out to test this prediction. The results are presented in Fig. 3.
They confirm the high temperature viscoelastic behavior of the PDC[4]. The figure
compares the creep behavior of pure silica with that of a silicon oxycarbide
polymer-derived-ceramic. Note that wheras pure silica shows large-scale creep at



1000'C at 20 MPa, the SiCO shows negligible steady state viscous creep, and instead
exhibits viscoelastic behavior as predicted by model (B) in Fig. 2.
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Figure 3: Viscoelastic behavior of polymer-derived silicon
oxycarbide as compared to the viscous creep fo silica.
The viscoelasticity is consistent with model (B) in Fig. 2.
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mixed bond geometries. Two of these results are shown in Fig. 5. On the left is the case
where the mixed bond populations are randomly distributed (p=0.5), while the other
case, p=0.75, assumes the Si-C-O bond distributions to be enriched in carbon.
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Figure 5: The quantitative model for the domains is developed into maps which can be read quickly to
yield values for the width of the domain walls and the domain size. The solid points derive from
experiments, which confirm the domain size measurements by SAXS.

Further experimental validation of the nanodomain model is obtained from
experiments where the PDC was etched with hydrofluoric acid. This procedure removed
the silica molecules within the domains (but not the mixed bonds adhering to the
graphene walls) leaving behind an scaffolding of ultrathin graphene[6]. These structures
had very high surface area, comparable to that of carbon nanotubes, and a pore size
which was in agreement with the domain size measured by SAXS.

In addition to creep resistance at high temperatures, the PDCs also have many
multifunctional properties. These properties are attributed to the interfacial
functionalization of the graphene domain walls[7].

THE FUTURE AND THE TECHNOLOGICAL POTENTIAL

The PDCs occupy a unique place in the materials-world. They are the first
example of amorphous ceramics. In this sense they compare with metallic glasses;
however, their metastability extends to much higher temperature than that of metallic
glasses. Their graphene nanodomain structure may also be compared to organic
polymers: whereas organics contain linear carbon chains, the PDCs contain networks of
two-dimensional graphene. Like polymers the carbon networks can be functionalized in
different ways to introduce a wide range of functional properties. These scientific
innovations are likely to continue for several years. High temperature sensors[8] and
catalysis[9] made from PDCs are likely to be the first technological applications.

The vitality of PDCs in the design and construction of ultrahigh temperature
environmental barrier coatings [EBCs] has been demonstrated in work in the Pl's



laboratory (under ARO-Honeywell support from 2002-2006). Results from this work are
presented in Fig. 6. The details are given in Refs [10-12].

a

6 b

Figure 6: (a) Photograph of the samples in the HPBR sample holder. Samples 1 and 2,
which had the Type 2 coating, were exposed to 50 hours of testing. Samples 3, 4, 5 and 6
had the Type 1 coating; these were subjected to 30 hours of testing. Overall, all the samples
have performed successfully. Photographs and data provided by Dr. Dongming Zhu, NASA.

The EBC coatings in Fig. 6 were prepared on silicon nitride coupons. PDC was
used as the bond coat while the top coat was made from porous hafnia bonded at grain
boundaries with PDC interfacial phase[13]. The coatings were tested in High Pressure
Burner Rig (HPBR) at NASA. The HPBR tests were conducted at 6 atmospheres total
pressure, at temperature in the range 2300-2350°F (1260-1290°C). The temperature was
measured with a pyrometer. The pyrometer was focused at the specimen in the middle,
noted as #3 in Fig. 4. An 8mm pyrometer was used, with an emissivity of 0.96 which gives
reliable temperature measurement. The results in Fig. 6 show that the specimens perform
well under HPBR exposure. It can be concluded that coatings demonstrated durability in the
high temperature burner rig environments.
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